Some variational inequality in L^r and its application to the Helmholtz-Weyl decomposition in 3-D bounded domains.

Hideo Kozono
Mathematical Institute
Tohoku University
Sendai 980-8578 Japan

Taku Yanagisawa
Department of Mathematics
Nara Women’s University
Nara 630-8506 Japan

Let us first impose the following assumption on the domain Ω:

Assumption. Ω is a bounded domain in \mathbb{R}^3 with the $C^{2+\mu}$-boundary $\partial\Omega$, where $\mu > 0$.

We denote by $C^\infty_0(\Omega)$ the set of all C^∞-vector functions $\varphi = (\varphi^1, \varphi^2, \varphi^3)$ with compact support in Ω, such that $\text{div}\ \varphi = 0$. $L^r_0(\Omega)$ is the closure of $C^\infty_0(\Omega)$ with respect to the L^r-norm $\|\cdot\|_r$; (\cdot, \cdot) denotes the duality pairing between $L^r(\Omega)$ and $L^r'(\Omega)$, where $1/r + 1/r' = 1$. $L^r(\Omega)$ stands for the usual (vector-valued) L^r-space over Ω, $1 < r < \infty$. Let us define the space $V^r(\Omega)$ by

\[V^r(\Omega) \equiv \{ u \in L^r(\Omega); \text{div}\ u \in L^r(\Omega), \text{rot}\ u \in L^r(\Omega), u \times \nu|_{\partial\Omega} = 0 \}, \quad 1 < r < \infty. \]

It is easy to see that if $u \in L^r(\Omega)$ with rot $u \in L^r(\Omega)$, then it holds $u \times \nu \in W^{1-1/r', r'}(\partial\Omega)^*$. Equipped with the norm $\|u\|_{V^r}$

\[\|u\|_{V^r} \equiv \|\text{div}\ u\|_r + \|\text{rot}\ u\|_r + \|u\|_r, \]

we may regard $V^r(\Omega)$ as a closed subset of $W^{1,r}(\Omega)$. Indeed, we have that $V^r(\Omega) \subset W^{1,r}(\Omega)$ with

\[\|\nabla u\|_r \leq C\|u\|_{V^r} \quad \text{for all} \ u \in V^r(\Omega), \]

where $C = C(r)$ is a constant depending only on r. Furthermore, we define $V^r_\sigma(\Omega)$ by

\[V^r_\sigma(\Omega) \equiv \{ u \in V^r(\Omega); \text{div}\ u = 0 \ \text{in} \ \Omega \}. \]

Finally, we denote by $\mathcal{H}(\Omega)$ the space of harmonic vector fields on Ω

\[\mathcal{H}(\Omega) \equiv \{ h \in C^\infty(\Omega) \cap C^2(\Omega); \text{div}\ h = 0, \text{rot}\ h = 0 \ \text{in} \ \Omega, \ h \cdot \nu|_{\partial\Omega} = 0 \}. \]

It is well-known that the dimension of $\mathcal{H}(\Omega)$ is finite. For more precise characterization of $\mathcal{H}(\Omega)$, see Remark 1 (2) below.

Our main result now reads

Theorem 1 Let Ω be as in the Assumption. Suppose that $1 < r < \infty$. Then for every $u \in L^r(\Omega)$, there are $p \in W^{1,r}(\Omega)$, $w \in V^r_\sigma(\Omega)$ and $h \in \mathcal{H}(\Omega)$ such that u can be represented as

\[u = h + \text{rot}\ w + \nabla p. \]
Such a triplet \(\{p, w, h\} \) is subordinate to the estimate

\[
\|\nabla p\|_r + \|w\|_{V_r^+} + \|h\|_r \leq C\|u\|_r
\]

with the constant \(C = C(r) \) independent of \(u \). The above decomposition (0.4) is unique. In fact, if \(u \) has another expression

\[
u = \tilde{h} + \text{rot } \tilde{w} + \nabla \tilde{p}
\]

for \(\tilde{h} \in H(\Omega), \tilde{w} \in V^r_\sigma(\Omega) \) and \(\tilde{p} \in W^{1,r}(\Omega) \), then we have

\[
h = \tilde{h}, \quad \text{rot } w = \text{rot } \tilde{w}, \quad \nabla p = \nabla \tilde{p}.
\]

An immediate consequence of the above theorem is

Corollary 1 Let \(\Omega \) be as in the Assumption. By the unique decomposition (0.4) we have

\[
L^r(\Omega) = H(\Omega) \oplus \text{rot } V^r_\sigma(\Omega) \oplus \nabla W^{1,r}(\Omega), \quad 1 < r < \infty. \quad (\text{direct sum})
\]

Let \(S_r, R_r \) and \(Q_r \) be projection operators associated to (0.4) from \(L^r(\Omega) \) onto \(H(\Omega), \text{rot } V^r_\sigma(\Omega) \) and \(\nabla W^{1,r}(\Omega) \), respectively, i.e.,

\[
S_r u \equiv h, \quad R_r u \equiv \text{rot } w, \quad Q_r u \equiv \nabla p.
\]

Then we have

\[
\|S_r u\|_r \leq C\|u\|_r, \quad \|R_r u\|_r \leq C\|u\|_r, \quad \|Q_r u\|_r \leq C\|u\|_r
\]

for all \(u \in L^r(\Omega) \), where \(C = C(r) \) is the constant depending only on \(1 < r < \infty \). Moreover, there holds

\[
\begin{align*}
S^2_r &= S_r, & S^*_r &= S^*_r, \\
R^2_r &= R_r, & R^*_r &= R^*_r, \\
Q^2_r &= Q_r, & Q^*_r &= Q^*_r,
\end{align*}
\]

where \(S^*_r, R^*_r \) and \(Q^*_r \) denote the adjoint operators on \(L^r(\Omega) \) of \(S_r, R_r \) and \(Q_r \), respectively.

Remark 1. (1) It is known that

\[
L^r(\Omega) = L^r_\sigma(\Omega) \oplus \nabla W^{1,r}(\Omega), \quad 1 < r < \infty, \quad (\text{direct sum}).
\]

See Fujiwara-Morimoto [4], Solonnikov [11] and Simader-Sohr [9]. Our decomposition (0.7) gives a more precise direct sum of \(L^r_\sigma(\Omega) \) such as

\[
L^r_\sigma(\Omega) = H(\Omega) \oplus \text{rot } V^r_\sigma(\Omega), \quad 1 < r < \infty. \quad (\text{direct sum})
\]

(2) Suppose that the boundary \(\partial \Omega \) has \(L + 1 \) connected components \(\Gamma_0, \Gamma_1, \cdots, \Gamma_L \) of \(C^2 \)-surfaces such that \(\Gamma_1, \cdots, \Gamma_L \) lie inside of \(\Gamma_0 \) with \(\Gamma_i \cap \Gamma_j = \phi \) for \(i \neq j \), and such that

\[
\partial \Omega = \bigcup_{j=0}^L \Gamma_j.
\]
Moreover, we assume that there are N C^2-surfaces $\Sigma_1, \cdots, \Sigma_N$ such that $\Sigma_i \cap \Sigma_j = \phi$ for $i \neq j$, and such that

$$\hat{\Omega} \equiv \Omega \setminus \Sigma, \Sigma \equiv \bigcup_{j=1}^{N} \Sigma_j$$

is simply connected.

Then Foias-Temam [3] showed that

$$\dim \mathcal{H}(\Omega) = N.$$ \hspace{1cm} (0.15)

They [3] also gave an orthogonal decomposition of $L^2_\sigma(\Omega)$ such as

$$L^2_\sigma(\Omega) = \mathcal{H}(\Omega) \oplus H_1(\Omega)$$

(orthogonal sum in $L^2(\Omega)$),

where

$$H_1(\Omega) \equiv \{ u \in L^2_\sigma(\Omega); \int_{\Sigma_j} u \cdot \nu dS = 0, \ j = 1, \cdots, N \}.$$

Yoshida-Giga [13] investigated the operator rot with its domain $D(\text{rot}) = \{ u \in H_1(\Omega); \text{rot } u \in H^1(\Omega) \}$ and showed that $H^1(\Omega)$ is simply connected. \hspace{1cm} (0.16)

Furthermore, they [13] gave another type of orthogonal L^2-decomposition of vector fields $u \in D(\text{rot})$. From our decomposition (0.12) with $r=2$, it follows also that $H^1(\Omega) = \text{rot } V^2(\Omega)$. \hspace{1cm} (3)

In the case when Ω is a star-shaped domain, Griesinger [5] gave a similar decomposition in $L^r(\Omega)$ for $1 < r < \infty$. In her case, it holds $N = 0$. Since she took the smaller space $W^{1,r}_0(\Omega)$ than our space $V^r(\Omega)$, it seems to be an open question whether, in the same way as in (0.7), the anihilator $\text{rot } W^{1,r}_0(\Omega)$ coincides with $\nabla W^{1,r}_0(\Omega)$.

As an application of our decomposition, we have the following gradient estimates of vector fields via div and rot.

Corollary 2 Assume that $1 < r < \infty$.

(1) Let $u \in L^r(\Omega)$ with $\text{div } u \in L^r(\Omega)$, $\text{rot } u \in L^r(\Omega)$ and $u \cdot \nu|_{\partial \Omega} = 0$. Then we have $u \in W^{1,r}(\Omega)$ with the estimate

$$\|\nabla u\|_r \leq C(\|\text{div } u\|_r + \|\text{rot } u\|_r + \|u\|_{1}), \hspace{1cm} (0.16)$$

where $C = C(r)$ is the constant independent of u.

(2) Let $u \in W^{s,r}(\Omega)$ for $s > 1 + 3/r$ with $u \cdot \nu|_{\partial \Omega} = 0$. Then we have $\nabla u \in L^\infty$ with the estimate

$$\|\nabla u\|_\infty \leq C \{ 1 + \|u\|_r + (\|\text{div } u\|_{\text{bmo}} + \|\text{rot } u\|_{\text{bmo}}) \log(e + \|u\|_{W^{s,r}}) \}, \hspace{1cm} (0.17)$$

where $C = C(r)$ is the constant independent of u. For definition of the bmo-norm, see Remark 2 below.

Remark 2. (1) Let us recall the bmo-norm in Ω. For $f \in L^1_{\text{loc}}(\mathbb{R}^3)$, we define $\|f\|_{\text{bmo}}(\mathbb{R}^3)$ by

$$\|f\|_{\text{bmo}}(\mathbb{R}^3) = \sup_{x \in \mathbb{R}^3, 0 < R < 1} \frac{1}{|B_R(x)|} \int_{B_R(x)} |f(y) - f_{B_R(x)}| dy \sup_{x \in \mathbb{R}^3} \frac{1}{|B_1(x)|} \int_{B_1(x)} |f(y)| dy$$

3
with \(f_{BR(x)} = \frac{1}{|BR(x)|} \int_{BR(x)} f(y) dy \), where \(BR(x) \) denotes the ball in \(\mathbb{R}^3 \) centered at \(x \) with radius \(R \) and \(|BR(x)| \) is its volume. For \(g \in L^1_{\text{loc}}(\Omega) \) we say \(g \in bmo(\Omega) \) if there is an extension \(f \in bmo(\mathbb{R}^3) \) such that \(g = f \) on \(\Omega \). The \(bmo \)-norm \(\|g\|_{bmo} \) of \(g \) on \(\Omega \) is defined by

\[
\|g\|_{bmo} \equiv \inf \{\|f\|_{bmo(\mathbb{R}^3)}; f \in bmo(\mathbb{R}^3), f = g \text{ on } \Omega\}.
\]

(2) von Wahl [12] proved that (0.16) without \(\|u\|_1 \) on the right hand side holds if and only if \(N = 0 \), i.e., \(\Omega \) is simply connected. He also showed the same estimate for \(u \in W^{1,r}(\Omega) \) with \(u \times \nu = 0 \) on \(\partial \Omega \) if and only if \(L = 0 \). Our variational inequality makes it possible to prove (0.16) also for \(u \in W^{1,r}(\Omega) \) with \(u \times \nu = 0 \) on \(\partial \Omega \). von Wahl’s estimate [12] may be regarded as a special case of ours since we can treat the general case such as (0.13) and (0.14). His method is based on the representation formula for \(u \in W^{1,r}(\Omega) \) via \(\text{div} \ u \) and \(\text{rot} \ u \) which is different from ours.

(3) In \(\mathbb{R}^3 \), by means of the Biot-Savard law, Beale-Kato-Majda [1] and Kozono-Taniuchi [6] obtained a similar estimate to (0.17) for \(u \in W^{s,r}(\mathbb{R}^3) \) with \(s > 1 + 3/r \). More generalized version in the homogeneous Besov space \(\dot{B}^{0,\infty}_{\infty,\infty}(\mathbb{R}^3) \) is found in Kozono-Ogawa-Taniuch [7]. In the case of simply connected bounded domains \(\Omega \) in \(\mathbb{R}^3 \), Ferrari showed (0.17) for \(\text{div} u = 0 \) with \(u \cdot \nu|_{\partial \Omega} = 0 \). More general case such as (0.13) and (0.14) was treated by Shirota-Yanagisawa [10] and Ogawa-Taniuchi [8].

References

